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The propagation of waves along and through a 
conducting layer of gas 

By G. S .  S .  LUDFORD 
University of Maryland 

(Received 10 February 1959) 

Two related questions concerning the transmission of e-&xomagnetic waves are 
considered : 

(i) The reflexion and transmission of plane waves a t  a perfectly conducting 
layer of gas in an otherwise non-conducting atmosphere, when there is a uniform 
external magnetic field perpendicular to the layer. Here the main result is that 
a layer of finite depth h is an almost perfect filter, being transparent to waves of 
frequency nmto/h (A,  = Alfvbn velocity, n an integer). 

(ii) The existence of plane surface waves for such a finite layer. There is always 
one such wave and, for certain ranges of frequency, two. The first becomes 
‘choked’ at the filter frequencies, its velocity first tending to zero and then 
jumping toafinitevalue. Thesecondchokesat thefrequenciesnn-A,a,/h,/(a~ +A:) 
(ao = acoustic velocity). 

1. Introduction 
At large distances from a transmitter such as a monochromatic Hertzian 

dipole, situated in an unbounded atmosphere, the local electromagnetic field is 
essentially that of a plane wave. When a layer” of different material is also pre- 
sent, however, the field at  points on the same side as the transmitter is modified 
by a reflected plane wave and, for a layer of suitable composition, by a surface 
wave. At points sufficiently close to the layer the latter provides by far the largest 
contribution to the field. 

In  electromagnetic theory, where the emphasis is on solid materials, surface 
waves are associated with the names of Zenneck and Sommerfeld [though 
their discovery was the result of mathematical errors, see e.g. Wait (1968)l. 
In  the theory of elasticity their counterparts are known by the names of Rayleigh 
and Love. The main property of plane surface waves is that they propagate along 
the layer without change in waveform, their amplitudes decreasing exponentially 
with distance from the interface(s). 

Here we consider a perfectly conducting layer in an otherwise non-conducting 
gas when there is a uniform external magnetic field perpendicular to the layer. 
Plane electromagnetic waves incident on the layer are in general completely 
reflected,? as in the case of a conducting solid. However, a layer of finite depth h 

* Here the term ‘layer’ is also used for a half-space, i.e. a layer of infinite depth. In the 
following sections a distinction is made. 

t This is meant in the energy sense. There is always a refracted wave, but it transports 
a negligible amount of energy in general. 
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is completely transparent to waves of frequency nnA,/h; here A,  is the Alfv6n 
velocity and n is an integer. The layer is an almost perfect filter, and this applies 
whatever the polarization or angle of incidence (with the exception of certain 
grazing incidences). * 

It appears that there are two types of surface wave for a layer of finite depth, 
corresponding to the two types of wave which can propagate through a conducting 
gas. The f i s t  can be excited by a transmitter of any frequency, though as a filter 
frequency is approached the wave becomes ‘ choked ’, its velocity tending rapidly 
to zero and then jumping to the velocity of light c directly the frequency is passed. 
The choking also marks a transition in the symmetry of the wave. For waves of the 
second type, the choking takes place at other frequencies, the velocity now 
jumping from zero to a,, the acoustic speed in the non-conducting part of the gas. 
However, there are certain ranges of frequency for which they do not exist. There 
are no surface waves for a layer of infinite depth. 

The discussion is based on the linearized form of the continuum equations. 
A finite coefficient of conductivity is retained in the ba’sic equations since this 
provides the link between the waves inside and outside the layer and also avoids 
possible error in the boundary conditions. Simplifications arise from two sources: 
(i) the two types of wave motion can be treated separately-this would not be the 
case for any other orientation of the external field with respect to the layer; 
(ii) the propagation velocity of the incident electromagnetic wave is much greater 
than that of a refracted wave inside the layer ( c  large compared to a, and A,), 
which means that the refracted waves cross the layer almost normally. It is 
essential, however, that a,/c and A,/c are not neglected indiscriminately. 

2. Basic equations 
We consider the motion of an electrically conducting inviscid gas in the absence 

of body forces and heat conduction. Further we shall assume that the material 
coefficients p (permeability), E (dielectric constant), and cr (conductivity) are 
constant. Then, as has been shown in a previous paper (Ludford 1969), the 
equations governing small perturbations of a given uniform state 

E = 0, H = H,, v = 0, p =po,  p =po  

are 

where 

I 1 
rlE, -J = E+pvxHo,  

aH 
p3T = -cu U 

av 
p 0 -=-grad at 

I ++p,,ivv = 0, --a:- aP aP = o 
at at at 

aE 
J = curlH-e-. 

at 

In  these equations H, p, p denote deviations from H,, p,, p,, while u: = (dp/dp),, 
where this derivative is to be evaluated for fixed entropy. 

* In  some unpublished work, F. J. Fishman has found a similar result for the special 
cme of normal incidence. This type of filtering action may have implicatione for propaga- 
tion in the ionosphere. 
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The plane wave solutions may be determined as follows. Take the y-axis along 
H, and let the x, y-plane contain the direction of propagation.* Then with all 
variables proportional to exp i(wt - KX - hy) and the same symbols used for 
factors, the equations divide into two sets, I and 11, involving only El, E,, H3, v3 
for type I, and E3, H,, H2, vl, v2,p,p, for type 11. We omit the details (cf. paper 
cited above) and give only the results. 

For waves of type I we have 

while K ,  A, and w must satisfy the dispersion relation 

At c2 
h2+(1-&)(K2-k2)  = 0, 8, 

(kg + iyw) ( C Z  + i y w )  - (3) 

Here e is the 'complex dielectric constant' frequently used in the optics of 
absorbing media 

(4) 

while c2 = 1/pe, At = pH$/p,,  and y = l / p r  (magnetic diffusivity). 
For waves of type I1 we find p = a i p  and 

ruw rU.0 ipw H, ipw Ho(h2 - w2/ag) E - - H l = - - H  
3 -  h K '- T/(K2+ h2- k2) v1 = Y K h ( K 2  +A2 - k2) " 

while the dispersion relation becomes 

The corresponding results for a non-conducting fluid are obtained in the limit 
y + 00 (r -+ 0).  From equations ( 2 )  and ( 3 )  we find the well-known formulas 

where K~ + h2 = wa/c2; similarly, equations ( 5 )  and (6) yield 

(8 )  E - - H  Yw -__  H,, v1 = v, = p = 0, 3 -  1 -  

if ~2 + A2 = w2/c2, and 

(9) 
K K v1 = - v2 = -p ,  E3 = Hl = H,, 

UP0 

if K2 + ha = w2/a i .  Thus the waves of type I reduce to electromagnetic waves with 
E polarized in the plane of H, and the direction of propagation, while those of 
type I1 reduce either to the perpendicularly polarized waves or acoustic waves. 

* This is not the same choice of axes aa in the paper cited above. However, it is more 
convenient for the present purposes. 
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6 and v in ascending powers of y: 
For future reference we also list here the first two terms in the expansions of 

i iTp y2w2 v=.-+- + .... 
A; A$ 

These will hold when the fluid is a good conductor. The detailed form of the waves 
in this case has also been discussed in Ludford ( 1  959). 

3. Waves of type I. Semi-infinite conducting space 
Suppose that the fluid fills the whole of space, but that for y < 0 its conductivity 

is zero, while for y > 0 it  is non-zero (but constant). All other given quantities 
(p, E ,  H,, p,, p,, a,) are to remain unchanged on crossing the interface y = 0. 

When an electromagnetic wave i (of type I) is incident on the interface from 
below, there will be a reflected wave r and a refracted or transmitted wave t 
(both of type I). The w's and K'S of all three waves will be the same, but 

h, = --A$, A, = J[(l-d)(k2-K2)] 

[see equation (3)], where the root with positive real part is to be taken. Now the 
tangential components of the (total) electric and magnetic fields must be con- 
tinuous at  the interface. On expressing El in terms of H, for each wave [see 
equations ( 2 )  and ( 7 ) ] ,  this leads to the conditions 

H$+ 4 = 4, H,-H, = e q ,  ( 1 1 )  

where the subscript 3 has been suppressed and 

Thus we have 

In particular, if the fluid is perfectly conducting above the interface, 

these limiting values as 7 -+ 0 are obtained by using equations (4) and (10). The 
transmitted wave is an Alfvkn wave which propagates in the H,-direction at  a 
speed A,c/J(Ag + c2) = A,, this value being independent of the incident wave. In 
terms of the angle of incidence rPi we have 

A 
sec 4i = 9 sec #r,  

J(A; + c2) C 
e =  

which is an extremely small quantity except in the case of glancing incidence. 

( 1 6 )  
Correspondingly we have 

H ,  = +HL = e, 
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to a high degree of accuracy,* except for q5i close to 90". In  the latter case,@. 
decreases rapidly through zero to - 2c11, and 4 decreases rapidly to zero, as 
g5i 3 90". The corresponding range for the angle of refraction q5# is extremely 
small, the largest possible value of tan q5t being given by 

max- K W  = - - - A0 ,!q 
At C A ,  J(Ai+c*) . c 

For 0 = 1, i.e. the angle of incidence 

there is no reflected wave. The wave field is then the prototype for an alternating 
current in a 'fluid wire' (see, for example, Sommerfeld's treatment (1952, p. 160) 
of solid wires). Note the absence of a skin effect: A, is real and finite. 

4. Waves of type I. Conducting layer 
Now the conductivity of the fluid is assumed to be non-zero only within the 

layer 0 < y < h. The refracted wave at y = 0 is also the incident wave at y = h 
and will now be denoted by the subscript a; in addition, there will be a reflected 
wave ,8 at the second interface and a transmitted wave t. The various values of 
A are given by 

A r =  - A  i, A,= - A  1 - - J[( 1 - 8) (k2  - Ka) ] ,  At = &. 
From the continuity of the tangential components of E and H at y = 0 we 

obtain the relations 

where 8 is given by (12) (with At replaced by A, in the first expression). Similar 
continuity requirements a t  y = h yield the equations 

&+ II;= Ha+ Hp, Hi- 4 = 0(H,- Hp), ( 1 8 4  

Ha exp ( - iA, h) + H, exp ( - iA, h) = 4 exp ( - iA,h), 
Ha exp ( - iA, h) - Hs exp ( - iAa h) = (1 /8) Ht exp ( - iAth). 

Thus the reflected and transmitted waves are given by 

( l /0  - 0) i sin A,h 
2 cos A,h + i( l/O + 0) sin A,h 

2 exp ( iAi h) 
' - 2 cos A, h + i( 118 + 0) sin A,h 

II;=- 

H -  

For a perfectly conducting layer, A, and 6 are given by (la), or, in the case of 8, 
by (15). Since 6 is very small, except for glancing incidence, it follows that the 
same is true of H,, provided A, h is not close to a multiple of n. This last condition 
is violated when the frequency is near 

Aoc nn . nrAo 
d ( A ; + c 2 ) k  h for some integer n. w =  

* This is essentially complete reflexion, since the electromagnetic waves transfer energy 
much faster than the Alfv6n wave. 

If the incident wave were an Alfv6n wave coming from above the interface, this would 
give the angle of incidence beyond which total reflexion occurs. Thus, effectively ell such 
Alfv6n waves are trapped. 
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The layer is therefore an almost perfect filter, allowing only waves with the 
frequencies (20) to be transmitted; to these waves it is transparent. For example, 
even if A,, is as large as lo5 cm/sec and angles of incidence up to 89" are admitted, 
the amplitude of H,/ Hi will have dropped from 1 to at most 1/40 by the time w 
deviates by ~A,,/l8Oh from its value (20). For normal incidence the decrease is 
to less than 1/2500 for the same deviation. 

When 8 = 1 there is no reflected wave whatever the frequency. For the corre- 
sponding angle of incidence (17) the layer is transparent. For angles much closer 
to n/2 than (17), the filter action occurs again (0 large). Both of these last effects 
are almost certainly unattainable physically (for the above data q5i is about & of 
a second off 90"). 

5. Waves of type II. Semi-infinite conducting space 
Waves of the second type present more difficulty. For each given w and K there 

are two possible values of A2 satisfying (6), and hence two waves which may be 
excited. In  the limit of zero conductivity these can be identified as electromagnetic 
and acoustic waves, the former carrying the variations in E3, H,, H2 and the latter 
those in w,, v2, p (and p).  In  general, however, each wave bears the fluctuations of 
all six quantities and no distinction can be made. 

Thus, when an electromagnetic wave (of type 11) is incident on the single inter- 
face from below, there will be not only a reflected electromagnetic wave r but also 
a reflected acoustic wave a, and, in addition, two transmitted waves t and r. All 
five waves will have the same 0's and K'S,  while 

I 

A,, = -A i ,  ha = - , , / (w2/at-K2) ,  

and A,, A, will be the roots of (6) which have positive real part. 
The continuity of the tangential component of the (total) electric field implies 

that of the normal component of magnetic induction, see equations ( 5 ) .  To these 
must be added the continuity of the tangential component of the magnetic field, 
so that in all we obtain the two relations 

when E3 is expressed in terms of H, or p and the subscript 1 omitted.* Here 

p o v ~ ~ ( ~ 2  + h2, - k2) 
i HoA,(h: - w2/af) ' 

c, = 

The remaining conditions are the continuity of pressure and of the normal com- 
ponent of velocity. When these two quantities are expressed in terms of HI, for 
the wave t ,  and of p ,  for the waves a, and T, we find 

where C, is obtained from C, by replacing A, with At. 
* The reason for using p instead of H I  in the r-wave will appear immediately. 
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Little is gained by writing down the solution of these four equations without 
first passing to the limit of infinite conductivity, and making certain approxima- 
tions. In  the limit we obtain 

and the equation (6) for A7 A, reduces, with the aid of equations (lo), to 

It is easily seen that this quadratic in A2 has positive roots when K < w/c, so that 
A, and A, are always real. We now use the fact that ao/c and A,/c are extremely 
small, which implies that K and w/c  are small compared to w/ao and @/A,. This 
yields the approximations* 

provided a, + A,. To these may be added the approximation 

The expression for A, shows us that the electromagnetic variables are of higher 
order than the dynamical in the 7-wave. From this follows the use of p, rather 
than H, above. In  fact, the 7-wave is a modified acoustic wave and the t-wave a 
modified Alfv6n wave [as may easily be seen from equations ( 5 ) ] ,  both of which 
move almost along the normal to the interface.? 

With these approximations and with hi and K expressed in terms of the angle 
of incidence $i, the solution becomes 

where terms of the second order in a,/c, A,/c have been neglected. Comparison 
with equations (13) and (15) for waves of type I shows that sec $i has been replaced 
by cos $i, as far as and H, are concerned. This means that equations (16) hold 
to a high degree of accuracy without qualification about the angle of incidence. 
The range of $t is A,/c and that of +, is a,/c. There is always a reflected wave (this 
corresponds to the non-existence of magnetic principal waves on wires, see 
Sommerfeld (1952, p. 160) and the end of $3).  The acoustic waves a and 7 are 
very weak, and in fact vanish for normal incidence. 

* All we really need to know is that the second term in each bracket is of the second 
order. The case a, = A, is treated in Appendix A. 

f The largest possible values of y5t and #, &re A& and a,/c, respectively. If the incident 
wave were a t -  or r-wave coming from above the interface, the appropriate one of these 
would give the angle of incidence beyond which total reflexion (of electromagnetic effects) 
takes place. Thus, effectively all such waves are trapped. 
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6. Waves of type II. Conducting layer 
The refracted waves at y = 0 are also incident waves at  y = h and will now be 

denoted by a, y ;  in addition, there will be their reflexions /3 and 6, say, and two 
transmitted waves t and 7, the first electromagnetic and the second acoustic. The 
eight values of A other than h, are determined by 

A,= - A  i, Au = - 2 / [ ( W 2 / a ; ) - K 2 ] ,  A8 = -Aa, 
ha = - A y ,  = hi, A,= - A  a, 

where A,, A, are the roots of equation (6) which have positive real part. 
The continuity requirements at y = 0 lead to the equations 

Y i 1 
Hi+ = Ha+ H)+C (Py-P8),  

I ha AY Pa = - ca( Ha f HF) + (Py -Pa), 

while those at  y = h give 

eiH, = e,H,+-H +- ( e y p y - -  ‘ p 8 ) ~  
ea ’ Cy eY 

Here the C’s are given by (22) with A, replaced by the appropriate A. The e’s stand 
for exp ( - ihh), with the suitable h inserted, and give the changes in phase across 
the layer. 

We pass immediately to the limit of infinite conductivity, and make the same 
approximations* as in the last section. The waves a, p are then seen to be modified 
Alfv6n waves and y ,  6 modified acoustic waves. The solution of the eight equa- 
tions (27) for the two reflected and two transmitted waves turns out to be 

- - ( H0P7/P0a%) 
{A, exp ( - ih,h) [A,  - exp ( Y ~ A ,  h ) ( ~ ,  cos A, h + a,i sin A, h)l/ (a; - A;)) (A,  sin $,,%j 

(28) 2(A,cos#i/c)exp (iAih) isinA,h+ 2(A,cos~+~/c) C O S A , ~ ’  
- Ht - - Hi - 

when terms of the second order are neglected. 
* The caae a, = A, is treated in Appendix A. 
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The values of H, and Ht should be compared with equation (19) for waves of 
type I; l/O has been replaced by c/A,~os$~,  in accordance with what we found 
in the last section, and 0 by zero. As a consequence the qualification about 
glancing incidence is absent" and the layer is an almost perfect filter for all 
angles of incidence, effectively transmitting only waves whose frequency 
satisfies sinA,h = 0, i.e. 

o=- nTAo with n an integer. (29) h '  

The acoustic waves are usually very weak, and in any case vanish for normal 
incidence. The incident wave is, in general, essentially reflected as an electro- 
magnetic wave. 

7. Surface waves of type I 
We turn now to a related but quite different question, namely, the existence of 

wave systems, propagating without loss parallel to the layer,? in which the 
amplitudes of the waves outside the layer decrease exponentially with distance 
from the interface(s). The importance of such natural oscillations of the con- 
ducting region is that they tend to trap the energy radiated by an electromagnetic 
transmitter and transport it  parallel to the layer [see Wait (1958) for a discussion 
of solid conductors]. 

Note that, in the case of the semi-infinite conducting space, we are not con- 
cerned with the total reflexion of waves coming from above the interface, though 
these give an exponentially damped electromagnetic wave. Such wave systems 
are produced by a source of energy deep within the conducting fluid. In  the 
notation of 8 3, we ask for a solution of (1 1) in which 2y, = 0, the only condition on 
A, being that it is positive imaginary; o is assumed given, while K ,  henceforth 
assumed positive for definiteness, is to be determined. It is clear on physical 
grounds that there is no solution; since At is real in equation (14), energy would be 
propagated away from the interface into the conducting region. This is confirmed 
by showing that 8 = - 1 has no solution of the required kind. 

For the finite conducting layer the situation is different. We ask for a solution of 
equations (18) with Hi = 0, the condition on A,, = -A, again being that it is 
positive imaginary. Physically the question makes sense. The Alfvh waves can 
combine to form a standing wave in y-direction, the energy transport taking place 
in the z-direction. In  fact, this is what occurs, the wave system being symmetric 
about y = 4h for some values of h and antisymmetric for the rest. 

On setting the determinant of equations (18) equal to zero [i.e. the denominator 
in either of equations (19)], we find the condition 

e =  uAo = i cot +huh, -i tan ahah, 
A,c.J(& + c2) 

where 

* In fact the filtering action improves as the angle of incidence increases, and the 
example for normal incidence in 5 5 is now a conservative estimate for all angles of incidence. 

t The conductivity is assumed infinite from now on. 
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Thus, remembering that hi = , / [ (w2 /c2 )  - K ~ ] ,  we have 

cot*hah, 
c , / (A:  + c2) 

h, = - i - o A ,  tan+hah, i 
c , / ( A $ + c 2 )  

K 2 = -  ::[ I+- A ; + c 2  ’’ tan2+~,h], $[I+- 

The corresponding wave systems are 

and 

Hr = Ha - - -  HB - 4 ___ 
2i sin +ha h exp (+iih, h) exp ( - 4iihah) - - 2i sin +ha h exp (ih, h) ’ 

respectively, the first being symmetric and the second antisymmetric. 
From the condition on A,. it follows that the fist system is acceptable only when 

tan&h is positive and the second only when this quantity is negative. As 
w increases, the change from one to the other takes place a t  the filter frequencies 
(20), the velocity W / K  decreasing rapidly to zero and then jumping to c.  Between 
two filter frequencies, the penetration depth l/lhil of the electromagnetic waves 
decreases from 03 to 0 as w increases. 

8. Surface waves of type II 
As in the case of waves of type I (and for a similar reason), there are no surface 

waves of type I1 when the conducting region is semi-infinite. This is shown 
formally in Appendix B. 

We therefore pass to the conducting layer, and consider the determinant of the 
system (27) with 4 = 0. As before we require that A,. = - hl shall be positive 
imaginary, and, correspondingly, that A, shall be positive imaginary. This deter- 
minant splits into two factors, one corresponding to  an antisymmetric wave- 
system in H and the other to a symmetric one. Thus K satisfies one or other ofthe 
equations 

[ (w2/a;) - A 3  (ha sin *ha h - ih, COB &ha h) (A, sin Qh, h + ih, cos Qh, h) 

[ ( w2/a;) - A 3  (A, cos *A, h + ih, sin +ha h)  (A, cos Qh, h - ih, sin Qh, h) 
(30) 

= [ (w2/a;) - A;] (A, sin Qh, h - ih, cos ih, h) (A, sin *A, h + ih, cos +hah), 

= [ (w2/a;)  -A;] (h,cos~h,h+ih,sinQh,h) (h,cosQh,h-ih,sin*h,h), 

where A, and A, are determined as functions of K by the equation (24). 
The situation is not as simple as it was for waves of type I. We therefore consider 

two limiting cases, namely, (i) a, small, and (ii) A ,  small, and then (iii) the 
‘choking’ phenomenon K = co, for arbitrary a,, A,. The first corresponds tolow 
temperature and the second to small applied magnetic field. 

(i) When a, is small the roots of (24) are given by 
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correct to terms O( 1). Note that K is no smaller than wla,, since we require A: c 0. 
The first of the relations (30) now reduces to 

(A, sin &I, h - ihi cos *A, h) (A, sin &I, h + ih, cos *Ar h) = 0, 

where we may take hi = - i ~ .  Since the first factor is negative [it may be rewritten 
as - K(sinh +Kh + cosh i ~ h ) ] ,  we are left with 

w l o h  iA, = -A,tan&h = --tan--, 
a, 2 a, 

which, because of the requirement on A,, can only be satisfied when tan oh/2a0 is 
positive. Then we have - 

. w  lwh 
, A,=%-tan--. 

"0  2 a, 

Similarly, the second of equations (30) can be satisfied only when tan wh/2a0 is 
negative and then 

w 1 wh . w  lwh , A, = -z-cot--. 
a, 2 a, 

As w increases the change from one wave system to the other takes place at the 
values 

with n an integer, 

and not at the filter frequencies (29), as in the case of waves of type I. Between 
adjacent frequencies (31), the penetration depth l/lhil of the electromagnetic 
waves decreases from ao/w to zero, while that of the acoustic waves decreases 
from 03 to 0. 

(ii) We turn now to the case where A, is small, for which two possibilities for 
K must be distinguished. If K is small compared to @/A,, we find 

correct to terms O(l ) ,  and the first of equations (30) reduces to 

(A, sin &Ar h - ihi cos &A,h) (sin +A, h + i cos +h,h) A, = 0. 

It follows that either A, = 0, i.e. K = @/a,, or else 

i.e. 

w lwh 

Ao. 2A, 
iA, = h,tan+A,h =-tan--, 

K = J(W",Ctan2!@). 
c2 A; 2A, 

Since hi must be negative imaginary and K larger than @/a,, this last result holds 
for 1 oh 1 1  

tan-- 2 A , J ( % - ~ ) .  
2AO 

(33) 

Further approximation shows that the h t  result is valid (in the sense that A, is 
actually a small positive imaginary) when 

1 wh < tan-- < A, 
1 + 2 / w h ~ ( l / a ~ - l / ~ ~ ) ~ ~ ~ ( ~ - ~ )  2A,  

1 1 '  1 

9 Fluid Mech. 9 
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The K,  o-curve is continuous at the right end-point of such an interval; its approxi- 
mate representation changes from K = w/ao to equation (32), however.* On the 
other hand, for values of rt comparable with or greater than w/Ao, a similar 
analysis shows that w lwh 

K=-tan--, 

where once again the tangent must be positive. Clearly this is the completion of 
equation (32). 

Similarly, the second of equations (30) yields equation (32) and the inequality 
(33) with the tangent replaced by the minus cotangent. The solution correspond- 
ing to A, = 0 above is the exact root A, = 0, which must be rejected [K < w/a,, see 
equation (24)]. 

The pattern is now clear. As w increases there is a change from one wave- 
system to the other at the filter frequencies (29). With the exception of the first 
interval, there is a portion at the lower end of each of the intervals between filter 
frequencies for which no wave system exists. In  the intervals for which tan wh/2A0 
is positive the penetration depth l / lA i l  of the electromagnetic waves decreases 
from l/w,/(l /ui-  l/c2) to zero [at first like l / w J ( l / a ~ -  l/c2)] while that of the 
acoustic waves decreases from co to 0 (at first remaining infinite). In the remaining 
intervals (tanwh/2A0 < 0) the total changes are the same, though the initial 
phases are absent. 

(iii) Finally, we consider the ‘choking’ phenomenon K = a, for arbitrary 
values of a, and A,. When K is large (in comparison with o/ao, w/A,), the roots of 
equation (24) are determined by 

A, 2Ao 

correct to terms O(1). Now the two relations (30) reduce to 
A,, sin +Ay h - K cos &A,, h = 0, 

A, cos QA, h + K sin +A, h = 0, 

i.e. K = A, tan +Ay h, 

i.e. K = - A, cot QA, h, 
the first being valid for tan +Ah positive and the second for it negative. Thus, in 
fact, the choking takes place for the values 

the previous approximations being in agreement with this value. In  particular 
we see that, in contrast to waves of type I, it is fortuitous if a choking frequency 
is also a filter frequency. 

I am indebted to S. Goldstein for suggesting this problem and for his interest 
a t  every stage. My thanks are also due to Max Krook for improvements in the 
manuscript. This research was supported in part by the United States Air Force 
under Contract No. AF49(638)-154, monitored by the AF Office of Scientific 
Research of the Air Research and Development Command, and in part by the 
Office of Ordnance Research, U.S. Army, under Contract DA-36-034-ORD-1486 
with the University of Maryland. 

* The situation is similar to that of two half-asymptotes being the limit curve of a family 
of half-hyperbolas. 
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Appendix A 
For a, = A,  and K $. 0,* the approximations (26) are replaced by 

where now it is necessary to know the second-order terms explicitly in order to 
determine the solution of the equations (21) correct to the first order. We find, 
in terms of the angle of incidence $t, 

rr,=(1-2;cos+i U 4, -=--- P a  sin q+, Hi 1 P o 4  2 c HO 

Thus the reflected waves are the same as for A ,  -+ a, [see equations (26)], but the 
r-wave is no longer weak, compensatory changes occurring in the t-wave. 

Similarly, the solution of the system (27) for the layer becomes 

rr, 
i ( e a  + era - 4) + (ao/c) [+(e i  - e t )  cosec +$ + (e ,  + era - 4) cos $61 

- - ( 4Pa/Poa,2) 

- ei Hf 

- - ( I l e a )  (HoPrlPo4) 

- rr, 

(e2, - e i )  + (ao/c) [ ( e t  - e i )  cos +$ + (1 - eaey)  sin $i - $(e,  - e,J2 cosec +$I 

- 
- 4(aO/c) (ea + ey)  00s $6 

' ( e y - e a )  + (aofc) ['(ey-ea) c o ~ $ i + & e a + e y )  (l-eaey)sin+iI 

- 
$(em + ey2 - 4) - (ao/c) [8 cos c$i + 4(e; - e i )  cosec q4-j ' 

so far as the transmitted and reflected waves are concerned. When these formulas 
are simplified by setting e y  = ea( l  +iwhsin+$/c) the result is the formal limit of 
equations (28). Hence similar remarks to those at the end of $6  apply here also. 

Appendix B 

condition 
The vanishing of the determinant of the system (21) with 4 = 0 yields the 

(34) 

* When $f = 0 the results (26) and (28) hold even when a, = A,. In fact in both caaea 
pa = p r  = 0 without approximation. 
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where the value of C has been taken from equation (23). Now A, and A, are 
required to be pure imaginaries, while for real K > @/ao equation (24) has two real 
roots ( k 4, say) and two purely imaginary roots ( k A,). Since A, $. -A, for any K,  

it follows [on taking real and imaginary parts of equation (34)] that 

($4;) (A,-A,) = 0, (:; ---A: ) (A,+&) = 0 

must hold simultaneously. It is now easily checked that none of the four 
possibilities which these last conditions offer is compatible with At and A, 
satisfying (24). 
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